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ABSTRACT

Human adapt their behaviors by continuously monitoring one
another to function socially in our society. The ability to
process face identity from memory is a crucial basic capa-
bility. In this work, we propose an event-contrastive connec-
tome network (E-cCN) in representing brain’s functional con-
nectivity with contrastive loss to handle layers of fMRI data
variabilities exists under different controlled stimuli events to
achieve improved automatic assessing of an individual’s face
processing and memory ability. Our proposed connectome
network achieves an overall recognition accuracy of 80.20%
and 82.05% in binary classification of separating high ver-
sus low scoring subjects on tasks of Taiwanese Face Memory
Test (TFMT) and component inverse efficiency score (cIE)
respectively. Further, our network embedding representation
demonstrate distinct connectivity patterns in key face process-
ing brain regions (ROIs) when comparing between high and
low face processing and memory ability.

Index Terms— contrastive loss, face processing and
memory, fMRI, connectome embedding

1. INTRODUCTION

Studies in social psychology has proposed an ABC model
of attitude stating that humans rely on three basic capabili-
ties, i.e., affect, behavior, and cognition, in order to achieve
successful social interactions with one another in our soci-
ety [1, 2]. Among these capabilities, the ability to express
and interpret social behaviors that convey demands toward so-
cial engagement is critical in carrying out smooth in-person
interactions. These social intents are often communicated
through eye contact, face perception, and language expres-
sion. In fact, the ability to recognize face identity is one of
the key components, studies have shown that people who are
better at face identity learning tend to build better interper-
sonal relationships and blend into society more easily [3]. On
the other hand, the ones suffer from neurodegenerative dis-
order that causes deficits in face identity and memory (e.g.,
prosopagnosia frontotemporal dementia and schizophrenia)
further demonstrate symptoms of social deficits [4, 5]. Quan-
titative assessment of face processing and memory skill is
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usually carried out through a series of psychological testings,
e.g., Cambridge Face Memory Test (CFMT) [6], component
task, and configural task [7].

Many studies have already brought neuroscientific in-
sights into human brain’s functional connectivity and the
mechanism of an individual’s face processing and memory.
For example, Mehrnam et al. measured electroencephalogra-
phy (EEG) to performance differentiation between subjects
of innocent from guilty who participated in concealed face
recognition test [8], and Lynn et al. found that increased
face perception impairment between autistic adolescents and
adulthood is due to abnormal connectivity between fusiform
face area (FFA) and other brain regions through fMRI studies
[9]. Other studies have also dedicated in understanding this
relationship using fMRI while subjects going through various
design of face recognition tasks [10]. While extensive works
have brought evidences into the brain functional networks
when processing face and memory, there is no computational
work on predicting individual face and memory processing
ability using the collected fMRI data directly.

In this work, we propose an event-contrastive connectome
network (E-cCN) to robustly represent the brain’s functional
connectivity for discriminative task. The E-cCN is learned
based on Node2Vec graph embedding approach [11] jointly
optimized with contrastive loss criterion (enhancing intra-
event compactness and inter-event dispersion) [12] across
the three different experimental events (object, neutral face,
expressive face) conventially used in the fMRI experimen-
tal protocol. We evaluate our framework in representing
subject’s brain functional connectivity to perform automatic
assessment of their corresponding Taiwanese Face Memory
Test (TFMT) and component inverse efficiency score (cIE)
[13]. Our framework achieves an unweighted accuracy of
80.2 % and 82.05 % in 2-class TFMT and cIE tasks respec-
tively. The use of contrastive loss improves the recognition
rates by 6.48% and 1.71% relative on TFMT and cIE respec-
tively over Node2vec. Further, we demonstrate there exists
distinct pattern of brain network structure embedded between
high performing face processing and memory subjects com-
pared to those with poor performance using our E-cCN.
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Fig. 1. A schematic of our proposed E-cCN architecture in performing automatic face recognition ability decoding.

Table 1. Summary of 19 face-related ROIs

Right

IFGOR(#1), Amygdala(#3), ATL(#5), Calcarine(#7),
FFA(#9), Hippocampus(#11), mSTS(#13), OFA(#15),
OP Junction(#16), Precuneus(#17), pSTS(#19)

Left

Amygdala(#2), ATL(#4), Calcarine(#6), FFA(#8),
Hippocampus(#10), mSTS(#12), OFA(#14), pSTS(#18)

2. RESEARCH METHODOLOGY

2.1. fMRI Data Collection and Preprocessing

We recruited 44 subjects conducting one-back working mem-
ory (WM) test. During fMRI scanning, subjects were stimu-
lated by a series of face and object images in separate blocks,
and they were instructed to press the button when they identi-
fied that the current image was the same as the previous one.
There were three different events chosen for the experimental
manipulation, i.e., object, neutral face, and expressive face.

The face images were collected from a previous study
by Shyi et al. [14], while the images of object were gathered
from the internet. The WM task began and ended each with a
fixation block. There were 18 image blocks with 17 fixation
blocks in between (each block lasted for12s). fMRI scan-
ning was performed on 3T scanner with 8-channel phase-
array head coil. A high-resolution T1-weighted 3D-SPGR
anatomical scan was acquired for co-registration between
structural and functional images (TR/TE=2000/33ms, voxel
size=3 * 3 * 3mm3, 40 slices). We performed all necessary
pre-processing steps using SPMS8 [15]. In this work, we
selected 19 face processing ROIs as our mask (table 1) [16].

2.2. Face Perception and Memory Tests Assessments

In this work, our goal is automatic assessing face process-
ing and memory ability by modeling the subjects fMRI data.
Each subject underwent two different assessment tasks after
fMRI scanning. The two tests used here were the Taiwanese
Face Memory Test (TFMT) and the component task.

2.2.1. Taiwanese Face Memory Test (TFMT)

In this test, participants were asked to accurately identify a
given target face within the three faces displayed during each
trial. The whole test comprised of 30 trials of novel-image
stage and 24 trials of novel-image with varying degrees of
noise (54 total trials for each subject). The TFMT score for
each subject was calculated as total number of accurate iden-
tification divided by the number of trials (a score between 0
to 1).

2.2.2. Component Test

There were a total of 48 trials in the component task, each trial
presented a pair of faces that could be identical or different
from each other. When they were not same, they differed
in the components of the face, e.g., mouth or eyes. The test
was used to assess how fast an subject can accurately answer
whether the pair of faces were distinct. Assessment score of
component inverse efficiency score (cIE) was used to quantify
speed-accuracy tradeoffs [17].

RT
1—-PE
where RT and PE are reaction time and proportion of error.

Finally, we binarize both TEMT and cIE into high versus low
as our recognition label using the median value as cut-off.

Inverse Efficiency Score (IES) = @))

2.3. Event-Contrastive Connectome Network (E-cCN)
Figure 1 depicts schematic of our proposed event-contrastive
connectome network (E-cCN). The E-cCN is learned by
jointly optimizing contrastive-loss across three fMRI exper-
imental manipulations (events). It is a two-stage procedure:
1) perform Node2Vec on functional connectivity matrix of
different blocks, and 2) contrastive loss embedded network
trained after Node2Vec graph embedding.

2.3.1. Graph Embedding of Functional Connectivity

We conduct Node2Vec on the functional connectivity matrix
that models the connectome through local and global random
walks from a brain region [11]. First, we calculate Pearson
correlation coefficients between nodal voxel-averaged time
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Table 2. It presents the binary face recognition ability classification results of our proposed E-cCN and other modeling tech-
niques. EI, E2 and E3 denote 3 different experimental events, object, neutral face and expressive face. The accuracy is

measured in UAR(%).

TFMT cIE

E1-Object E2-Nface E3-Eface Fusion | E1-Object E2-Nface E3-Eface Fusion
ICA 55.79 55.68 60.95 62.32 60.47 65.38 59.40 61.32
PCA 64.32 60.32 62.32 64.95 49.16 58.55 5491 59.40
Graph-SVM 64.32 64.32 64.32 67.57 61.32 61.32 62.39 65.17
DeepWalk 53.05 51.58 63.47 62.95 61.32 70.73 68.80 68.80
LINE 55.78 45.16 51.79 59.07 58.33 53.21 64.74 64.32
Node2Vec 58.55 72.65 69.02 73.72 63.68 78.42 63.68 80.34
E-cCN 74.95 71.58 62.95 80.20 79.27 76.71 79.49 82.05

series of each experimental event, i.e., object, neutral face and
expressive face. Then each correlation matrix can be turned
into a vectorized representation serves as a brain connectome
representation for each event block after Node2Vec embed-
ding. The related parameter settings are as below: there is
one iteration including 500 random walks with a length of 8
steps. The output dimension is 50, and the window size is 4.
The return parameter p is 1, and in-out parameter q is 1.6.

2.3.2. Contrastive Loss Embedded Network

Functional connectivity obtained from fMRI images under
each experimental event includes composite variability, e.g.,
when stimulated with a face, it may create a composite reac-
tion of seeing something and observing faces in the measured
brain activity. This composite variability leads to undesirable
effect in the recognition task. It is further confounded with
other brain activity, e.g., experimentation tasks, emotional
states and psychological conditions.

We propose to enhance the discriminative power of the
Node2Vec feature using an event-condition connectome net-
work (E-cCN). The E-cCN network is learned by simultane-
ously optimizing with contrastive loss criterion [12] and cross
entropy loss, Lo g. The contrastive loss, L., is embedded to
the first layer of E-cCN by explicitly centering the represen-
tation with respect to each event-center in the following form:

m

I }Z l|lz; — Cei”;
)

SO e i — 1) + 6
where m is the number of events, x; is the data under condi-
tion 4 and ¢; is the center of j event determined by the mean
value (c., denotes to the similar meaning of event e; ). ¢ is set
as 1 preventing the denominator equal to 0. Finally, our total
loss Lyotq; of the complete network is:

Ltotal = Lc + LCE (3)

2.4. TFMT and cIE Classification

We derive our fMRI feature representation by extracting E-
cCN output from the first layer in order to compare with rep-
resentation extracted from Node2Vec only. Since each par-
ticipant undergoes 6 blocks per type of event resulting in 6

@

different representations per event, we use mean pooling to
obtain per-event fMRI representation as input to the linear-
kernel support vector machine for TEFMT and cIE classifica-
tion.

3. EXPERIMENTAL SETUP AND RESULTS

We carry out high versus low classification for both TEMT
and component clE task. The evaluation scheme is done via
leave-one-person-out cross-validation, and the accuracy is
measured in unweighted average recall (UAR). Univariate
feature selection is also carried out in the training set.

3.1. Experiment Setup
The E-cCN architecture is composed of 5 fully-connected lay-
ers with node dimensions at each layer to be 950-512-256-64-
2. The total loss function is composed of contrastive loss on
950-dimension representation and cross entropy loss for the
discriminative task. The batch size and epoch are set 64 and
50 respectively. Network trained on contrastive loss and cross
entropy loss using Adam with Ir = 0.001 and 0.01, respec-
tively. The activation function is ReL.U with batch normaliza-
tion. We extract the first layer (950-dimension) as subject’s
feature representation.

We compare our framework with the following method to
derive fMRI feature representation:

* ICA: Perform independent component analysis on
BOLD signal.

* PCA: Perform principal component analysis on BOLD
signal.

* Graph-SVM: Perform functional correlation matrix of
without neural network embedding.

* DeepWalk: Perform DeepWalk on functional correla-
tion matrix [18].

* LINE: Perform LINE embedding on functional corre-
lation matrix [19].

* Node2Vec: Perform Node2Vec embedding on func-
tional correlation matrix without contrastive loss em-
bedding [11].

These features are then fed into final TFMT and cIE classifi-
cation procedure.
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3.2. Experiment Results and Discussions

Table 2 summarizes our complete experimental results. The
proposed E-cCN obtains the best accuracy compared to all
other baseline systems, especially when using representation
learned from the object-event; it obtains 74.95% recognition
rate in TFMT and 79.27% in clE. We further perform feature-
level fusion by concatenating representation from three dif-
ferent events, denoted as ‘Fusion’ in Table 2. The E-cCN Fu-
sion improves the accuracy to 80.2% and 82.05% (5.25% and
2.78% relative improvement over object only). When com-
paring with all of the baseline systems, performance obtained
by our proposed E-cCN is significantly better than all sys-
tems indicating the contrastive-based joint optimization net-
work can indeed help uncover the discriminative information
in the subject’s brain functional connectivity embedding.

In general, by introducing the graph embedding ap-
proach Node2Vec, which considers global walks across
brain network providing a better brain connectivity repre-
sentation, the performance improves 6.15% in TFMT and
15.17% in cIE from Graph-SVM. Besides, the contrastive loss
embedding(E-cCN) further helps improve 6.48% and 1.71%
in the recognition accuracy when comparing to Node2Vec.
In addition, we observe that specifically in face condition,
contrastive loss of E-cCN may slightly negatively impacts the
results, which could indicate that the original Node2Vec rep-
resentation learned directly from face-condition is sufficiently
cleaned to perform well on the classification. In summary,
the proposed contrastive loss are robust across all events, and
the fusion improves the recognition rates of face and memory
ability over 80% on both measures of TFMT and cIE.

3.3. Brain Connectome Visualization

To further understand how the brain network function ap-
peared under different stimuli condition between two differ-
ent groups of subjects (high-scoring versus low-scoring of
TFMT and cIE), we compute the cosine similarity by aver-
aging E-cCN representations separately in two groups under
given events, neutral faces and emotional faces. In this work,
we present a visualization on the brain network formed by at
least 5 ROIs where one of them is chosen as a central point.
The chosen networks for subjects when stimulated with two
events are presented in figure 2. The dots on the plot stand
for brain regions. The connected lines between dots indicate
the cosine similarity measures of corresponding pair of re-
gions. The darker line color means a higher similarity be-
tween the two ROIs, and the red dots means the ROIs that
have a stronger links with others, i.e., can be imagined as
forming a functional network.

According to prior works, rOFA(#15) and rFFA(#9) are
necessary for normal face processing [20]. On the other
hand, when being exposed to emotional faces, rFFA and
other expressive-related regions such as ATL(#4, #5), Amyg-
dala(#2, #3), IFGOrb(#1), pSTS(#18, #19) have been identi-
fied to function together [21]. In our work, for subjects that

E3-Eface

E2-Nface

Well-performed

cosine similarity

Poor-performed

Fig. 2. A figure of chosen networks in high-scoring and low-
scoring group stimulated with the events of neutral and ex-
pressive faces during fMRI scanning.

are in the high-performing group meet the expectation, i.e.,
rOFA and rFFA show up together demonstrating a normal
face-perception process, while the low-performing group ei-
ther misses key region, e.g., rFFA, or involves with high level
ROIs 1ATL(#4) and hippocampus(#11) in neutral-face event,
indicating that the reduce in face processing memory function
may be attributed to the poor connectivity functioning in key
face processing and memory brain regions.

4. CONCLUSION AND FUTURE WORK

In this work, we present a novel fMRI feature embedding
framework for automatic assessing individual face processing
and memory ability, i.e., the TFMT and cIE. Specifically, we
propose an E-cCN to model the participants brain functional
connectivity and obtain a promising accuracy of over 80%
in classifying between high versus low performing group.
The proposed approach outperforms existing state-of-the-art
approaches in modeling brain connectivity for discrimina-
tive task. Our model provides enhanced representation by
jointly optimizing three experimental manipulations using
contrastive loss embedding. Our results demonstrate that
it not only provides promising modeling power, but also
through visualization of the learned connectivity, we show
differential brain functions between subjects with high or low
scoring ability in face identification from memory.

There are several future goals to pursue. One immediate
way is to incorporate event-conditioned constraint in learning
Node2Vec, such that the complete architecture can be tuned
end-to-end. Secondly, the additional use of structural data
such as diffusion tensor imaging (DTI), diffusion weighted
imaging (DWI) to construct a multi-view model with fMRI,
which has been shown useful in hub detection task [22],
could be integrated as additional brain-related representa-
tion. Lastly, we would like to apply our method in other
brain-related disease, such as autism and Bipolar, which will
hopefully bring further insights in understanding the brain
network differences between health controls and patients.
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